Abstract
Motivated by the observation that certain convolutional channels of a Convolutional Neural Network (CNN) exhibit object specific responses, we seek to discover and exploit the convolutional channels of a CNN in which neurons are activated by the presence of specific objects in the input image. A method for explicitly fine-tuning a pre-trained CNN to induce object specific channel (OSC) and systematically identifying it for the human faces has been developed. In this paper, we introduce a multi-scale approach to constructing robust face heatmaps based on OSC features for rapidly filtering out non-face regions thus significantly improving search efficiency for face detection. We show that multi-scale OSC can be used to develop simple and compact face detectors in unconstrained settings with state of the art performance.
Original language | English |
---|---|
Pages (from-to) | 1270-1277 |
Number of pages | 8 |
Journal | IEICE Transactions on Information and Systems |
Volume | E101D |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2018 |
Externally published | Yes |
Keywords
- Convolutional neural network
- Deep feature
- Face detection
- Object specific channel
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering
- Artificial Intelligence