TY - JOUR
T1 - Polysaccharide–dextrin thickened fluids for individuals with dysphagia
T2 - recent advances in flow behaviors and swallowing assessment methods
AU - Wang, Kedu
AU - Cheng, Zihang
AU - Qiao, Dongling
AU - Xie, Fengwei
AU - Zhao, Siming
AU - Zhang, Binjia
N1 - Publisher Copyright:
© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
PY - 2024
Y1 - 2024
N2 - The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide–dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide–dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.
AB - The global aging population has brought about a pressing health concern: dysphagia. To effectively address this issue, we must develop specialized diets, such as thickened fluids made with polysaccharide–dextrin (e.g., water, milk, juices, and soups), which are crucial for managing swallowing-related problems like aspiration and choking for people with dysphagia. Understanding the flow behaviors of these thickened fluids is paramount, and it enables us to establish methods for evaluating their suitability for individuals with dysphagia. This review focuses on the shear and extensional flow properties (e.g., viscosity, yield stress, and viscoelasticity) and tribology (e.g., coefficient of friction) of polysaccharide–dextrin-based thickened fluids and highlights how dextrin inclusion influences fluid flow behaviors considering molecular interactions and chain dynamics. The flow behaviors can be integrated into the development of diverse evaluation methods that assess aspects such as flow velocity, risk of aspiration, and remaining fluid volume. In this context, the key in-vivo (e.g., clinical examination and animal model), in-vitro (e.g., the Cambridge Throat), and in-silico (e.g., Hamiltonian moving particles semi-implicit) evaluation methods are summarized. In addition, we explore the potential for establishing realistic assessment methods to evaluate the swallowing performance of thickened fluids, offering promising prospects for the future.
KW - dysphagia food
KW - Polysaccharide dextrin
KW - rheological properties
KW - swallowing behaviors
KW - thickened fluids
KW - tribological properties
UR - http://www.scopus.com/inward/record.url?scp=85189083153&partnerID=8YFLogxK
U2 - 10.1080/10408398.2024.2330711
DO - 10.1080/10408398.2024.2330711
M3 - Review article
AN - SCOPUS:85189083153
SN - 1040-8398
JO - Critical Reviews in Food Science and Nutrition
JF - Critical Reviews in Food Science and Nutrition
ER -