TY - JOUR
T1 - Pre-gelatinized high-amylose starch enables easy preparation of flexible and antimicrobial composite films for fresh fruit preservation
AU - Xi, Wanting
AU - Liu, Peng
AU - Ling, Jiandi
AU - Xian, Dongni
AU - Wu, Linlin
AU - Yuan, Yang
AU - Zhang, Jianguo
AU - Xie, Fengwei
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/1
Y1 - 2024/1
N2 - While high-amylose starch (HAS) possesses advantageous properties such as high resistant starch content and favorable mechanical attributes, its gelatinization constraints have limited its applicability. This study enhances its versatility by focusing on pre-gelatinized (PG) HAS with exceptional rehydratability, achieved by disorganizing native HAS granules (with amylose contents of 55 % and 68 %, respectively) using a 33 % CaCl2 solution, followed by water-ethanol precipitation and freeze-drying. The resulting PG-HAS exhibited elevated amylose content (61 % and 75 %) with minimal changes in amylose molecular weight. PG-HAS displayed superior water-absorption index (WAI) and water-soluble index (WSI) compared to native HAS, further improved by 2 % CaCl2 solution incorporation. Furthermore, composite films were prepared by mixing PG-HAS with PVA at a 6:4 (w/w) ratio. The PG-G50 (61 % amylose content)/PVA composite film exhibited remarkable elongation (131.1 ± 5.4 %), nearly three times that of a normal corn starch (NCS, with 27 % amylose)/PVA film, attributed to improved starch dispersity and higher amylose content. Nonetheless, the PG-G70 (75 % amylose content)/PVA film at the same ratio showed lower elongation (54.7 ± 8.0 %), potentially due to strong cohesive forces between amylose chains that impede starch-PVA interactions. Moreover, the PG-HAS/PVA composite films, enriched with antibacterial agents, demonstrated effective antibacterial properties with a gradual and sustained release of active compounds. Notably, the PG-G50/PVA/tannic acid (TA) film effectively preserved fresh apple slices by inhibiting bacteria growth and preventing browning. These findings underscore the excellent rehydration of PG-HAS and its potential as an inner packaging material for irregularly shaped foods, such as sliced fruits or meats, due to its nontoxic nature, softness and flexibility, which allows the film to maintain close contact with food surfaces.
AB - While high-amylose starch (HAS) possesses advantageous properties such as high resistant starch content and favorable mechanical attributes, its gelatinization constraints have limited its applicability. This study enhances its versatility by focusing on pre-gelatinized (PG) HAS with exceptional rehydratability, achieved by disorganizing native HAS granules (with amylose contents of 55 % and 68 %, respectively) using a 33 % CaCl2 solution, followed by water-ethanol precipitation and freeze-drying. The resulting PG-HAS exhibited elevated amylose content (61 % and 75 %) with minimal changes in amylose molecular weight. PG-HAS displayed superior water-absorption index (WAI) and water-soluble index (WSI) compared to native HAS, further improved by 2 % CaCl2 solution incorporation. Furthermore, composite films were prepared by mixing PG-HAS with PVA at a 6:4 (w/w) ratio. The PG-G50 (61 % amylose content)/PVA composite film exhibited remarkable elongation (131.1 ± 5.4 %), nearly three times that of a normal corn starch (NCS, with 27 % amylose)/PVA film, attributed to improved starch dispersity and higher amylose content. Nonetheless, the PG-G70 (75 % amylose content)/PVA film at the same ratio showed lower elongation (54.7 ± 8.0 %), potentially due to strong cohesive forces between amylose chains that impede starch-PVA interactions. Moreover, the PG-HAS/PVA composite films, enriched with antibacterial agents, demonstrated effective antibacterial properties with a gradual and sustained release of active compounds. Notably, the PG-G50/PVA/tannic acid (TA) film effectively preserved fresh apple slices by inhibiting bacteria growth and preventing browning. These findings underscore the excellent rehydration of PG-HAS and its potential as an inner packaging material for irregularly shaped foods, such as sliced fruits or meats, due to its nontoxic nature, softness and flexibility, which allows the film to maintain close contact with food surfaces.
KW - Antimicrobial activity
KW - Food preservation
KW - High-amylose starch
KW - Pre-gelatinized starch
KW - Starch rehydration
KW - Starch/PVA composite film
UR - http://www.scopus.com/inward/record.url?scp=85176237173&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.127938
DO - 10.1016/j.ijbiomac.2023.127938
M3 - Article
C2 - 37944723
AN - SCOPUS:85176237173
SN - 0141-8130
VL - 254
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 127938
ER -