Abstract
An efficient electrochemical impedance genosensing platform has been constructed based on graphene/zinc oxide nanocomposite produced via a facile and green approach. Highly pristine graphene was synthesised from graphite through liquid phase sonication and then mixed with zinc acetate hexahydrate for the synthesis of graphene/zinc oxide nanocomposite by solvothermal growth. The as-synthesised graphene/zinc oxide nanocomposite was characterised with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffractometry (XRD) to evaluate its morphology, crystallinity, composition and purity. An amino-modified single stranded DNA oligonucleotide probe synthesised based on complementary Coconut Cadang-Cadang Viroid (CCCVd) RNA sequence, was covalently bonded onto the surface of graphene/zinc oxide nanocomposite by the bio-linker 1-pyrenebutyric acid N-hydroxysuccinimide ester. The hybridisation events were monitored by electrochemical impedance spectroscopy (EIS). Under optimised sensing conditions, the single stranded CCCVd RNA oligonucleotide target could be quantified in a wide range of 1.0×10–11 M to 1.0×10−6 with good linearity (R =0.9927), high sensitivity with low detection limit of 4.3×10–12 M. Differential pulse voltammetry (DPV) was also performed for the estimation of nucleic acid density on the graphene/zinc oxide nanocomposite-modified sensing platform. The current work demonstrates an important advancement towards the development of a sensitive detection assay for various diseases involving RNA agents such as CCCVd in the future.
Original language | English |
---|---|
Pages (from-to) | 365-373 |
Number of pages | 9 |
Journal | Biosensors and Bioelectronics |
Volume | 94 |
DOIs | |
Publication status | Published - 15 Aug 2017 |
Externally published | Yes |
Keywords
- Genosensor
- Graphene/Zinc Oxide Nanocomposite
- Impedance
- Methylene Blue
- RNA Detection
ASJC Scopus subject areas
- Biotechnology
- Biophysics
- Biomedical Engineering
- Electrochemistry