TY - GEN
T1 - Spatio-temporal tensor analysis for whole-brain fMRI classification
AU - Ma, Guixiang
AU - He, Lifang
AU - Lu, Chun Ta
AU - Yu, Philip S.
AU - Shen, Linlin
AU - Ragin, Ann B.
N1 - Publisher Copyright:
Copyright © by SIAM.
PY - 2016
Y1 - 2016
N2 - Owing to prominence as a research and diagnostic tool in human brain mapping, whole-brain fMRI image analysis has been the focus of intense investigation. Conventionally, input fMRI brain images are converted into vectors or matrices and adapted in kernel based classifiers. fMRI data, however, are inherently coupled with sophisticated spatio-temporal tensor structure (i.e., 3D space x time). Valuable structural information will be lost if the tensors are converted into vectors. Furthermore, time series fMRI data are noisy, involving time shift and low temporal resolution. To address these analytic challenges, more compact and discriminative representations for kernel modeling are needed. In this paper, we propose a novel spatio-temporal tensor kernel (STTK) approach for whole-brain fMRI image analysis. Specifically, we design a volumetric time series extraction approach to model the temporal data, and propose a spatio-temporal tensor based factorization for feature extraction. We further leverage the tensor structure to encode prior knowledge in the kernel. Extensive experiments using real-world datasets demonstrate that our proposed approach effectively boosts the fMRI classification performance in diverse brain disorders (i.e., Alzheimer's disease, ADHD and HIV).
AB - Owing to prominence as a research and diagnostic tool in human brain mapping, whole-brain fMRI image analysis has been the focus of intense investigation. Conventionally, input fMRI brain images are converted into vectors or matrices and adapted in kernel based classifiers. fMRI data, however, are inherently coupled with sophisticated spatio-temporal tensor structure (i.e., 3D space x time). Valuable structural information will be lost if the tensors are converted into vectors. Furthermore, time series fMRI data are noisy, involving time shift and low temporal resolution. To address these analytic challenges, more compact and discriminative representations for kernel modeling are needed. In this paper, we propose a novel spatio-temporal tensor kernel (STTK) approach for whole-brain fMRI image analysis. Specifically, we design a volumetric time series extraction approach to model the temporal data, and propose a spatio-temporal tensor based factorization for feature extraction. We further leverage the tensor structure to encode prior knowledge in the kernel. Extensive experiments using real-world datasets demonstrate that our proposed approach effectively boosts the fMRI classification performance in diverse brain disorders (i.e., Alzheimer's disease, ADHD and HIV).
UR - http://www.scopus.com/inward/record.url?scp=84991671366&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84991671366
T3 - 16th SIAM International Conference on Data Mining 2016, SDM 2016
SP - 819
EP - 827
BT - 16th SIAM International Conference on Data Mining 2016, SDM 2016
A2 - Venkatasubramanian, Sanjay Chawla
A2 - Meira, Wagner
PB - Society for Industrial and Applied Mathematics Publications
T2 - 16th SIAM International Conference on Data Mining 2016, SDM 2016
Y2 - 5 May 2016 through 7 May 2016
ER -