TY - JOUR
T1 - Stochastic service network design with rerouting
AU - Bai, Ruibin
AU - Wallace, Stein W.
AU - Li, Jingpeng
AU - Chong, Alain Yee Loong
N1 - Funding Information:
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR, MPOCR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/ IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ?, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk?odowska-Curie Actions, European Union; Investissements d?Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and theATLAS Tier- 1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
PY - 2014/2
Y1 - 2014/2
N2 - Service network design under uncertainty is fundamentally crucial for all freight transportation companies. The main challenge is to strike a balance between two conflicting objectives: low network setup costs and low expected operational costs. Together these have a significant impact on the quality of freight services. Increasing redundancy at crucial network links is a common way to improve network flexibility. However, in a highly uncertain environment, a single predefined network is unlikely to suit all possible future scenarios, unless it is prohibitively costly. Hence, rescheduling is often an effective alternative. In this paper, we proposed a new stochastic freight service network design model with vehicle rerouting options. The proposed model explicitly introduces a set of integer variables for vehicle rerouting in the second stage of the stochastic program. Although computationally more expensive, the resultant model provides more options (i.e. rerouting) and flexibility for planners to deal with uncertainties more effectively. The new model was tested on a set of instances adapted from the literature and its performance and characteristics are studied through both comparative studies and detailed analyses at the solution structure level. Implications for practical applications are discussed and further research directions are also provided.
AB - Service network design under uncertainty is fundamentally crucial for all freight transportation companies. The main challenge is to strike a balance between two conflicting objectives: low network setup costs and low expected operational costs. Together these have a significant impact on the quality of freight services. Increasing redundancy at crucial network links is a common way to improve network flexibility. However, in a highly uncertain environment, a single predefined network is unlikely to suit all possible future scenarios, unless it is prohibitively costly. Hence, rescheduling is often an effective alternative. In this paper, we proposed a new stochastic freight service network design model with vehicle rerouting options. The proposed model explicitly introduces a set of integer variables for vehicle rerouting in the second stage of the stochastic program. Although computationally more expensive, the resultant model provides more options (i.e. rerouting) and flexibility for planners to deal with uncertainties more effectively. The new model was tested on a set of instances adapted from the literature and its performance and characteristics are studied through both comparative studies and detailed analyses at the solution structure level. Implications for practical applications are discussed and further research directions are also provided.
KW - Rerouting
KW - Service network design
KW - Stochastic programming
KW - Transportation logistics
UR - http://www.scopus.com/inward/record.url?scp=84891078471&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2013.11.001
DO - 10.1016/j.trb.2013.11.001
M3 - Article
AN - SCOPUS:84891078471
SN - 0191-2615
VL - 60
SP - 50
EP - 65
JO - Transportation Research, Series B: Methodological
JF - Transportation Research, Series B: Methodological
ER -