Synthesis of functional materials by non-Newtonian microfluidic multiphase system

Yong Ren, Kai Seng Koh, Yaping Zhang

Research output: Chapter in Book/Conference proceedingBook Chapter

22 Downloads (Pure)

Abstract

With increasing level of polymer solution involvement in multiphase microdevice for formation of emulsion and fabrication of functional materials, it is of paramount importance to systematically understand the relevant physics of droplet formation in non-Newtonian fluids and how the material formation process may be affected due to the complex rheological effect. The chapter aims to review and discuss the recent advances in echnologies that enable fabrication and application of functional materials formed from non-Newtonian microfluidic multiphase system. Rheological behavior of polymer solutions and the mathematical models are reviewed. The influence of microstructure on rheological behavior of polymer solutions and the fundamental physical phenomena driving non-Newtonian microfluidic multiphase system are discussed. Shear thinning and viscoelastic effect on breakup dynamics and droplet formation are presented. The microfabrication process of the device and synthesis of emulsion-templated materials with potential industrial and biochemical applications are elucidated.
Original languageEnglish
Title of host publicationAdvances in microfluidics - new applications in biology, energy, and materials Sciences
PublisherINTECH
Pages359-384
DOIs
Publication statusPublished - 23 Nov 2016

Publication series

Name
PublisherINTECH

Keywords

  • non-Newtonian fluid, microfluidic, multiphase system, functional material

Fingerprint

Dive into the research topics of 'Synthesis of functional materials by non-Newtonian microfluidic multiphase system'. Together they form a unique fingerprint.

Cite this