TY - JOUR
T1 - Synthesis of porous polymer-based metal–organic frameworks monolithic hybrid composite for hydrogen storage application
AU - Molefe, Lerato Y.
AU - Musyoka, Nicholas M.
AU - Ren, Jianwei
AU - Langmi, Henrietta W.
AU - Ndungu, Patrick G.
AU - Dawson, Robert
AU - Mathe, Mkhulu
N1 - Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/5/15
Y1 - 2019/5/15
N2 - Herein, we report a simple method for the preparation of cross-linked polymer of intrinsic microporosity (PIM-1)/Materials Institute Lavoisier chromium (III) terephthalate [MIL-101(Cr)] monoliths which involves direct impregnation of PIM-1 with MIL-101(Cr) powder by physical mixing in tetrachloroethane solvent. This procedure yields monoliths with high metal–organic framework (MOF) loading weight percentages of up to 80 wt% of MIL-101 powder with little loss of composite mechanical strength. From the nitrogen adsorption isotherms, it was observed that the PIM-1/80 wt% MIL-101(Cr) had good retention of MOF filler surface area and accessibility of its micropores with nearly no pore blocking effects. The hydrogen adsorption was also not far from the estimated hydrogen uptake capacity based on the MIL-101 weight percentage estimation. As a consequence of the highly porous nature of the hybrid material, PIM-1/MIL-101(Cr) composite has been considered as a promising material for inclusion in hybrid hydrogen storage cylinders. Moreover, these composites provided better handling compared to the crystalline powder MOFs without compromising the properties of MOF.
AB - Herein, we report a simple method for the preparation of cross-linked polymer of intrinsic microporosity (PIM-1)/Materials Institute Lavoisier chromium (III) terephthalate [MIL-101(Cr)] monoliths which involves direct impregnation of PIM-1 with MIL-101(Cr) powder by physical mixing in tetrachloroethane solvent. This procedure yields monoliths with high metal–organic framework (MOF) loading weight percentages of up to 80 wt% of MIL-101 powder with little loss of composite mechanical strength. From the nitrogen adsorption isotherms, it was observed that the PIM-1/80 wt% MIL-101(Cr) had good retention of MOF filler surface area and accessibility of its micropores with nearly no pore blocking effects. The hydrogen adsorption was also not far from the estimated hydrogen uptake capacity based on the MIL-101 weight percentage estimation. As a consequence of the highly porous nature of the hybrid material, PIM-1/MIL-101(Cr) composite has been considered as a promising material for inclusion in hybrid hydrogen storage cylinders. Moreover, these composites provided better handling compared to the crystalline powder MOFs without compromising the properties of MOF.
UR - http://www.scopus.com/inward/record.url?scp=85060520956&partnerID=8YFLogxK
U2 - 10.1007/s10853-019-03367-1
DO - 10.1007/s10853-019-03367-1
M3 - Article
AN - SCOPUS:85060520956
SN - 0022-2461
VL - 54
SP - 7078
EP - 7086
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 9
ER -