Abstract
Modeling of grinding process, especially the grinding forces, has been studied extensively. Most previous work concerns the conventional grinding process using a rigid wheel, where the forces are generally based on the preset depth of grinding. However, for compliant grinding such as Shape Adaptive Grinding (SAG) that adopts an elastic tool covered with abrasive pellets, the penetration depth of individual abrasive grains is not simply equal to the preset value. As elastic contact occurs between the tool and workpiece, previous models are not able to estimate the material removal mechanism. Besides, the progressive transitions in grain-workpiece interaction for compliant cutting tools have not been reported yet. To fill these gaps and to offer a fundamental understanding of the compliant grinding process, we propose in this study a new multi-scale model spanning from macroscopic tool-workpiece contact to microscopic grain-workpiece interaction in the unique conditions of using a compliant grinding tool, i.e. SAG tool. Based on the spring-grain model and considering the stochastic nature of grain size and wear flat area, the static penetration and dynamic removal of individual grain can be predicted. Particularly, the removal mechanism is clarified with a new consideration of the transition between rubbing, plowing and cutting stages for each individual grain of the compliant tool. Experiments including scratch tests and removal footprints were carried out, and the high consistency with theoretical predictions validates the proposed model. Finally, considering the progressive abrasive wear in grinding, in-process wear compensation was conducted to enable consistent material removal on aspheric steel molds. The proposed method is not only meaningful to reveal the mechanism of SAG process, but also offers a new foundation for studying other compliant grinding processes in future.
Original language | English |
---|---|
Pages (from-to) | 76-97 |
Number of pages | 22 |
Journal | International Journal of Machine Tools and Manufacture |
Volume | 142 |
DOIs | |
Publication status | Published - Jul 2019 |
Keywords
- Grinding force
- Material removal mechanism
- Shape adaptive grinding
- Tool wear
ASJC Scopus subject areas
- Mechanical Engineering
- Industrial and Manufacturing Engineering