Abstract
The graphene-like monolayer of carbon, boron and nitrogen that maintains the native hexagonal atomic lattice (BCN), is a novel semiconductor with special thermal properties. Herein, with the aid of a non-equilibrium molecular dynamics approach (NEMD), we study phonon thermal rectification in a hybrid system of pure graphene and BCN (G-BCN) in various configurations under a series of positive and negative temperature gradients. We begin by investigating the relation of thermal rectification to sample's mean temperature, T, and the imposed temperature difference, ΔT, between the two heat baths at its ends. We then move to explore the effect of varying strain levels of our sample on thermal rectification, followed by Kapitza resistance calculations at the G-BCN interface, which shed light on the interface effects on thermal rectification. Our simulation results reveal a BCN-configuration-dependent behavior of thermal rectification. Finally, the underlying mechanism leading to a preferred direction for phonons is studied using phonon density of states (DOS) on both sides of the G-BCN interface.
Original language | English |
---|---|
Article number | 108763 |
Journal | Journal of Molecular Graphics and Modelling |
Volume | 129 |
DOIs | |
Publication status | Published - Jun 2024 |
Keywords
- Graphene-BCN interface
- Kapitza resistance
- Molecular dynamics
- Phonon density of states
- Thermal rectification
ASJC Scopus subject areas
- Spectroscopy
- Physical and Theoretical Chemistry
- Computer Graphics and Computer-Aided Design
- Materials Chemistry