Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation

Omid Farzadian, Farrokh Yousefi, Mehdi Shafiee, Farhad Khoeini, Christos Spitas, Konstantinos V. Kostas

Research output: Journal PublicationArticlepeer-review

Abstract

The graphene-like monolayer of carbon, boron and nitrogen that maintains the native hexagonal atomic lattice (BCN), is a novel semiconductor with special thermal properties. Herein, with the aid of a non-equilibrium molecular dynamics approach (NEMD), we study phonon thermal rectification in a hybrid system of pure graphene and BCN (G-BCN) in various configurations under a series of positive and negative temperature gradients. We begin by investigating the relation of thermal rectification to sample's mean temperature, T, and the imposed temperature difference, ΔT, between the two heat baths at its ends. We then move to explore the effect of varying strain levels of our sample on thermal rectification, followed by Kapitza resistance calculations at the G-BCN interface, which shed light on the interface effects on thermal rectification. Our simulation results reveal a BCN-configuration-dependent behavior of thermal rectification. Finally, the underlying mechanism leading to a preferred direction for phonons is studied using phonon density of states (DOS) on both sides of the G-BCN interface.

Original languageEnglish
Article number108763
JournalJournal of Molecular Graphics and Modelling
Volume129
DOIs
Publication statusPublished - Jun 2024

Keywords

  • Graphene-BCN interface
  • Kapitza resistance
  • Molecular dynamics
  • Phonon density of states
  • Thermal rectification

ASJC Scopus subject areas

  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Computer Graphics and Computer-Aided Design
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Thermal rectification in novel two-dimensional hybrid graphene/BCN sheets: A molecular dynamics simulation'. Together they form a unique fingerprint.

Cite this