Time-Aware Missing Healthcare Data Prediction Based on ARIMA Model

Lingzhen Kong, Guangshun Li, Wajid Rafique, Shigen Shen, Qiang He, Mohammad R. Khosravi, Ruili Wang, Lianyong Qi

Research output: Journal PublicationArticlepeer-review

49 Citations (Scopus)

Abstract

Healthcare uses state-of-the-art technologies (such as wearable devices, blood glucose meters, electrocardiographs), which results in the generation of large amounts of data. Healthcare data is essential in patient management and plays a critical role in transforming healthcare services, medical scheme design, and scientific research. Missing data is a challenging problem in healthcare due to system failure and untimely filing, resulting in inaccurate diagnosis treatment anomalies. Therefore, there is a need to accurately predict and impute missing data as only complete data could provide a scientific and comprehensive basis for patients, doctors, and researchers. However, traditional approaches in this paradigm often neglect the effect of the time factor on forecasting results. This article proposes a time-aware missing healthcare data prediction approach based on the autoregressive integrated moving average (ARIMA) model. We combine a truncated singular value decomposition (SVD) with the ARIMA model to improve the prediction efficiency of the ARIMA model and remove data redundancy and noise. Through the improved ARIMA model, our proposed approach (named MHDPSVD_ARIMA) can capture underlying pattern of healthcare data changes with time and accurately predict missing data. The experiments conducted on the WISDM dataset show that MHDPSVD_ARIMA approach is effective and efficient in predicting missing healthcare data.

Original languageEnglish
Pages (from-to)1042-1050
Number of pages9
JournalIEEE/ACM Transactions on Computational Biology and Bioinformatics
Volume21
Issue number4
DOIs
Publication statusPublished - 2024
Externally publishedYes

Keywords

  • ARIMA
  • Missing healthcare data
  • data prediction
  • time
  • truncated SVD

ASJC Scopus subject areas

  • Biotechnology
  • Genetics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Time-Aware Missing Healthcare Data Prediction Based on ARIMA Model'. Together they form a unique fingerprint.

Cite this