TY - GEN
T1 - Video Infringement Detection via Feature Disentanglement and Mutual Information Maximization
AU - Liu, Zhenguang
AU - Yu, Xinyang
AU - Wang, Ruili
AU - Ye, Shuai
AU - Ma, Zhe
AU - Dong, Jianfeng
AU - He, Sifeng
AU - Qian, Feng
AU - Zhang, Xiaobo
AU - Zimmermann, Roger
AU - Yang, Lei
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/10/26
Y1 - 2023/10/26
N2 - The self-media era provides us tremendous high quality videos. Unfortunately, frequent video copyright infringements are now seriously damaging the interests and enthusiasm of video creators. Identifying infringing videos is therefore a compelling task. Current state-of-the-art methods tend to simply feed high-dimensional mixed video features into deep neural networks and count on the networks to extract useful representations. Despite its simplicity, this paradigm heavily relies on the original entangled features and lacks constraints guaranteeing that useful task-relevant semantics are extracted from the features. In this paper, we seek to tackle the above challenges from two aspects: (1) We propose to disentangle an original high-dimensional feature into multiple sub-features, explicitly disentangling the feature into exclusive lower-dimensional components. We expect the sub-features to encode non-overlapping semantics of the original feature and remove redundant information. (2) On top of the disentangled sub-features, we further learn an auxiliary feature to enhance the sub-features. We theoretically analyzed the mutual information between the label and the disentangled features, arriving at a loss that maximizes the extraction of task-relevant information from the original feature. Extensive experiments on two large-scale benchmark datasets (i.e., SVD and VCSL) demonstrate that our method achieves 90.1% TOP-100 mAP on the large-scale SVD dataset and also sets the new state-of-the-art on the VCSL benchmark dataset. Our code and model have been released at https://github.com/yyyooooo/DMI/, hoping to contribute to the community.
AB - The self-media era provides us tremendous high quality videos. Unfortunately, frequent video copyright infringements are now seriously damaging the interests and enthusiasm of video creators. Identifying infringing videos is therefore a compelling task. Current state-of-the-art methods tend to simply feed high-dimensional mixed video features into deep neural networks and count on the networks to extract useful representations. Despite its simplicity, this paradigm heavily relies on the original entangled features and lacks constraints guaranteeing that useful task-relevant semantics are extracted from the features. In this paper, we seek to tackle the above challenges from two aspects: (1) We propose to disentangle an original high-dimensional feature into multiple sub-features, explicitly disentangling the feature into exclusive lower-dimensional components. We expect the sub-features to encode non-overlapping semantics of the original feature and remove redundant information. (2) On top of the disentangled sub-features, we further learn an auxiliary feature to enhance the sub-features. We theoretically analyzed the mutual information between the label and the disentangled features, arriving at a loss that maximizes the extraction of task-relevant information from the original feature. Extensive experiments on two large-scale benchmark datasets (i.e., SVD and VCSL) demonstrate that our method achieves 90.1% TOP-100 mAP on the large-scale SVD dataset and also sets the new state-of-the-art on the VCSL benchmark dataset. Our code and model have been released at https://github.com/yyyooooo/DMI/, hoping to contribute to the community.
KW - mutual information
KW - neural network
KW - video copyright infringements
UR - http://www.scopus.com/inward/record.url?scp=85179549587&partnerID=8YFLogxK
U2 - 10.1145/3581783.3612002
DO - 10.1145/3581783.3612002
M3 - Conference contribution
AN - SCOPUS:85179549587
T3 - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
SP - 144
EP - 152
BT - MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 31st ACM International Conference on Multimedia, MM 2023
Y2 - 29 October 2023 through 3 November 2023
ER -