Why evolution is not a good paradigm for program induction; A critique of genetic programming

John R. Woodward, Ruibin Bai

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

24 Citations (Scopus)

Abstract

We revisit the roots of Genetic Programming (i.e. Natural Evolution), and conclude that the mechanisms of the process of evolution (i.e. selection, inheritance and variation) are highly suited to the process; genetic code is an effective transmitter of information and crossover is an effective way to search through the viable combinations. Evolution is not without its limitations, which are pointed out, and it appears to be a highly effective problem solver; however we over-estimate the problem solving ability of evolution, as it is often trying to solve "self-imposed" survival problems. We are concerned with the evolution of Turing Equivalent programs (i.e. those with iteration and memory). Each of the mechanisms which make evolution work so well are examined from the perspective of program induction. Computer code is not as robust as genetic code, and therefore poorly suited to the process of evolution, resulting in a insurmountable landscape which cannot be navigated effectively with current syntax based genetic operators. Crossover, has problems being adopted in a computational setting, primarily due to a lack of context of exchanged code. A review of the literature reveals that evolved programs contain at most two nested loops, indicating that a glass ceiling to what can currently be accomplished.

Original languageEnglish
Title of host publication2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Summit - Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC'09
PublisherAssociation for Computing Machinery (ACM)
Pages593-600
Number of pages8
ISBN (Print)9781605583266
DOIs
Publication statusPublished - 2009
Event2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Summit - 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC'09 - Shanghai, China
Duration: 12 Jun 200914 Jun 2009

Publication series

Name2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Summit - Proceedings of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC'09

Conference

Conference2009 World Summit on Genetic and Evolutionary Computation, 2009 GEC Summit - 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC'09
Country/TerritoryChina
CityShanghai
Period12/06/0914/06/09

Keywords

  • Genetic programming

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Why evolution is not a good paradigm for program induction; A critique of genetic programming'. Together they form a unique fingerprint.

Cite this